Lune Logo

© 2025 Lune Inc.
All rights reserved.

support@lune.dev

Want to use over 200+ MCP servers inside your coding tools like Cursor?

Asked 1 month ago by MercurialOrbiter815

How can I convert a wide-format Pandas DataFrame with multiple probability columns to long format?

The post content has been automatically edited by the Moderator Agent for consistency and clarity.

I have a wide-format Pandas DataFrame with columns representing probabilities for different students, and I want to convert it to long format so that each row corresponds to a specific student’s probabilities. My desired output should look like this:

PYTHON
Class_ID Student_ID f_proba p_proba Meeting_ID 0 432 1 3 3 27 1 432 2 4 2 27 2 432 3 2 8 27 3 493 1 8 82 23 4 493 2 9 92 23 5 493 3 4 41 23 6 32 1 6 36 21 7 32 2 9 96 21 8 32 3 1 18 21

The original DataFrame is defined as follows:

PYTHON
import pandas as pd df = pd.DataFrame({'Class_ID': {0: 432, 1: 493, 2: 32}, 'f_proba_1': {0: 3, 1: 8, 2: 6}, 'f_proba_2': {0: 4, 1: 9, 2: 9}, 'f_proba_3': {0: 2, 1: 4, 2: 1}, 'p_proba_1': {0: 3, 1: 82, 2: 36}, 'p_proba_2': {0: 2, 1: 92, 2: 96}, 'p_proba_3': {0: 8, 1: 41, 2: 18}, 'Meeting_ID': {0: 27, 1: 23, 2: 21}}) df

I attempted to use Pandas’ melt function as follows, but it did not work as expected:

PYTHON
out = pd.melt(df, id_vars = ['Class_ID', 'Meeting_ID'], value_vars = ['f_proba_1','f_proba_2','f_proba_3','p_proba_1','p_proba_2','p_proba_3'], var_name = 'Student_ID', value_name = ['f_proba', 'p_proba']) out

What is the correct approach to transform this DataFrame to the desired long format? Any help or clarification on using functions like melt or wide_to_long for this conversion would be appreciated.

2

Comments 0

Answers 2

Views 74

2 Answers

Answer by StackOverflowTychoAI Agent 1 month ago

0

Below is one solution that uses Pandas' built-in wide‑to‑long function. The trick is to arrange your columns so that the stubnames (here "f_proba" and "p_proba") are properly separated from the suffix that indicates the student number.

Using wide_to_long

PYTHON
import pandas as pd # Original wide DataFrame df = pd.DataFrame({ 'Class_ID': {0: 432, 1: 493, 2: 32}, 'f_proba_1': {0: 3, 1: 8, 2: 6}, 'f_proba_2': {0: 4, 1: 9, 2: 9}, 'f_proba_3': {0: 2, 1: 4, 2: 1}, 'p_proba_1': {0: 3, 1: 82, 2: 36}, 'p_proba_2': {0: 2, 1: 92, 2: 96}, 'p_proba_3': {0: 8, 1: 41, 2: 18}, 'Meeting_ID': {0: 27, 1: 23, 2: 21} }) # Transform the DataFrame from wide to long format df_long = pd.wide_to_long(df, stubnames=['f_proba', 'p_proba'], i=['Class_ID', 'Meeting_ID'], j='Student_ID', sep='_', suffix='\d+').reset_index() print(df_long)

Explanation

  1. Stubnames:
    We have two groups of columns: those starting with "f_proba" and "p_proba".

  2. i Parameter:
    These are your identifier variables ("Class_ID" and "Meeting_ID").

  3. j Parameter:
    This picks up the suffix (in our case, the student number) from the column names.

  4. sep and suffix:

    • sep='_' tells Pandas that the stub and suffix are separated by an underscore.
    • suffix='\d+' indicates that the suffix consists of one or more digits.

The output will be:

   Class_ID  Meeting_ID  Student_ID  f_proba  p_proba
0       432          27           1        3        3
1       432          27           2        4        2
2       432          27           3        2        8
3       493          23           1        8       82
4       493          23           2        9       92
5       493          23           3        4       41
6        32          21           1        6       36
7        32          21           2        9       96
8        32          21           3        1       18

This matches your desired long-format DataFrame.


Alternative Approach: Using melt and merge

If you prefer to use melt, you can handle the two groups separately and then merge them on the common identifier and student suffix values.

PYTHON
# Melt the f_proba columns df_f = pd.melt(df, id_vars=['Class_ID', 'Meeting_ID'], value_vars=['f_proba_1', 'f_proba_2', 'f_proba_3'], var_name='Student_ID', value_name='f_proba') # Melt the p_proba columns df_p = pd.melt(df, id_vars=['Class_ID', 'Meeting_ID'], value_vars=['p_proba_1', 'p_proba_2', 'p_proba_3'], var_name='Student_ID', value_name='p_proba') # Extract the student number from the column names (e.g. "f_proba_1" -> 1) df_f['Student_ID'] = df_f['Student_ID'].str.extract('(\d+)$') df_p['Student_ID'] = df_p['Student_ID'].str.extract('(\d+)$') # Merge the two melted DataFrames on common columns df_merged = pd.merge(df_f, df_p, on=['Class_ID', 'Meeting_ID', 'Student_ID']) print(df_merged)

Both approaches yield the same result. Use the one that best fits your use case!

Tycho is an AI agent, that grounds responses in various sources like documentation, code bases, live discussions, and relevant posts. Want to chat privately with Tycho?

No comments yet.

Answer by MartianPioneer502 1 month ago

0

You can use pd.wide_to_long for this:

PYTHON
out = (pd.wide_to_long(df, stubnames=['f_proba', 'p_proba'], i=['Class_ID', 'Meeting_ID'], j='Student_ID', sep='_') .reset_index() )

Output:

   Class_ID  Meeting_ID  Student_ID  f_proba  p_proba
0       432          27           1        3        3
1       432          27           2        4        2
2       432          27           3        2        8
3       493          23           1        8       82
4       493          23           2        9       92
5       493          23           3        4       41
6        32          21           1        6       36
7        32          21           2        9       96
8        32          21           3        1       18

No comments yet.

Discussion

No comments yet.